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INTRODUCTION

Smoothing noise and preserving edges
are competing and discordant objectives for
an image filter. Spatially invariant linear
filters cannot satisfactorily resolve this
conflict; they generally emphasize smoothing
noise at the expense of preserving edges.
The search for filters that preserve edges
better has led to nonlinear filters, often
called adaptive filters, that adjust their
calculations according to the local properties
of an image. In this paper we propose a
new edge preserving filter, which we call
the contiguous K-average filter, that is
related to the K-average filter first
introduced by Davis and Rosenfeld [8]. As
is customary, we will compare our filter to
other edge preserving filters using test data.
[see for example 6,8,10,12,20,24,26,27,40]
However, we would like to move beyond the
narrow assessment that such comparison
tests provide. We must begin to analyze
filters as tools that are used as a part of
the restoration, enhancement and analysis of
images. Every filter has capabilities and
limitations. It is only by identifying the
individual properties of a given filter that
we can hope to know when this filter is an
appropriate tool for some specific task.

Therefore we are not merely reporting
studies on several classes of edge preserving
filters; we are also proposing some methods
to be used for the study of all such filters.

The contiguous K-average filter was
developed by Ronnie Pearson at NASA's
Science and Technology Laboratory of the
John C. Stennis Space Center. The filter

was intended for use in processing remote
sensing images. This context has several
important consequences for image
processing.

For such data there are a variety of

different sources of degradation that
produce significantly different kinds of
noise. Some of these kinds of noise are only
vaguely characterized and some change from
one data acquisition to the next. Techniques
that require a precise description of well
defined noise lose some effectiveness with

such vaguely characterized and variable
noise [4,12,20,27,44]. The contiguous
K-average filter does not make specific

assumptions about the statistical properties
of the image noise and it does not require
estimating any parameters of the noise
distribution. The method does have

parameters, the window size and the
number of neighbors, but these are best set
using information about the content of the

image, or the exact purpose for using the
filter rather than the the nature ot the
noise.

Many sources of remote sensing images
produce multiple channel data. The noise is
frequently not well correlated across
channels whereas the true data normally is
well correlated. Algorithms like the
contiguous K-average that can take
advantage of this correlation will perform
better than algorithms that can not [18].

Geographic images are not pictures of
a few well defined objects against a simple
background, ie they lack image wide
coherence. They contain many small local
subpopulations, and do not satisfy the
underlying assumptions of methods that use
global statistics [18,30]. For example, the
histogram of a geographic image merges so
many different subpopulations that it can
not reliably be used to identify which
neighbors of a pixel come from the same
subpopulation. For this reason the
contiguous K-average filter uses local
properties of the image. It assumes the
pixels of an object have similar gray level
values and form a connected shape.

In practice we want to use edge
preserving filters to help delineate the
component objects of an image. In many
cases the objects in an image are separated
from one another by the edges formed by
their boundaries. Hence clarifying the edges
will make the objects more distinct. The
"objects" in a remotely sensed geographic
image are often areas delineated by abstract
concepts like land use, geology and plant
cover. For this reason we will use the term

feature instead of object. Another advantage
of this usage is that it will remind the

reader of the followin_ discussion. A feature
is a connected set ol pixels of the image.
The gray levels of the pixels in a feature
are more or less constant, but perturbed by
noise, and hence actually are not all the
same. Finally, adjacent features have
significantly different avera_se gray levels.



Conceptually, we are modeling an image as
a piecewise constant function that has been
degraded by noise.

The piecewise constant image model
has motivated the design of many filters,

includin$ ours. But real world images
frequently do not conform well to this
model. Strong trends in the gray level of an
object are common. Boundaries between
features are often genuinely extended and
vague. Images will contain regions where
the true scale of the features is so small

that the region appears to be a jumble of
different values. See [14] for a filter based
on a piecewise linear image model. See [27]
for a filter based on higher degree
polynomials.

The new filters in this paper enhance
features by removing noise using controlled
local averaging. Averaging is well
established as a technique for removing
noise. If several values are taken from a

population, their average will be a better
estimate of the population mean than any
single value. The problem is how to
compute an average using only pixels from
a single homogeneous subpopulation. See
[ll,25,29,39,and 43] for several approaches
to this problem. Of course we must not be
too dogmatic here, since sometimes there
will be pixels that do not really come from
any well defined subpopulation; and an
algorithm must still do something
reasonable for these pixels. See [32 and 41]
for different approaches to adaptively
computing local averages. The following
three principles of filter design could be
viewed as heuristics for choosing a set to
average with the goal of the selection being
to increase the chances of choosing members
for the set that are from a single
subpopulation 0f"
exists.) The first a

suitable subpopulation
principle is that the

members of the set to average should be
pixels near the pixel whose filtered value is
being computed. We implement this
principle by using a moving window
algorithm. See [38] for filters that
adaptively change the size of the averaging
neighborhood. See [12,21,22,42] for several
algorithms that use local statistics in a
fashion different from from our use. The

second principle is that the members of the

set should have gray levels near the gray

level of the pixel whose value is being
computed. See [24,23] for a filter, the
sigma filter, based on this principle. The
third principle, which characterizes our new
filter, is that the set chosen should be
connected.

We will compare filters that use
different combinations of the three

principles. The simplest class of filters to be
discussed are the fixed template filters.
These filters choose a set to average by
selecting the pixels in a fixed set of
positions relative to the pixel being
updated. Thus the first principle, choosing
nearby pixels, is the only principle used by
fixed template filters. These conceptually
simple, nonadaptive filters provide a
theoretically tractable baseline case for
comparison with the other, more complex
filters. The K-average filter [8] uses the
first two principles. The set chosen to
average is selected from a window around
the pixel to be updated. The second
principle guides the selection of pixels from
the window. A predetermined number ("K")
of pixels are selected by taking the pixel
itself and the K-1 pixels with gray levels
nearest to the gray level of the pixel to be
updated. The new filter introduced in this
paper, which we will call the contiguous
K-average filter, uses all three principles.
The K pixels to be averaged are selected
from a window, with the pixels selected
having gray levels as close as possible to
the gray level of the pixel being updated
but with the selection restricted by the
requirement that the selected set be
connected. This quick description of the
algorithms leaves open many details that
will be attended to in the next section.

Many nonlinear filters, including ours,
show a threshold effect or cutoff size.

Features smaller than the cutoff are greatly
attenuated or even eliminated by the filter
whereas features larger than the cutoff are
substantially preserved. A simple example
of this is provided by the median filter, a
rank operator. If a feature is too small to
make up a majority of the window, pixels
in the feature often will not be updated
with a value from the feature; and the
feature may be removed. We will see
examples of this in section six. See [16] for

examples using other rank filters. Linear



filters do not show this kind of threshold

effect and many of the advantages of
nonlinear filters over linear ones are related

to the presence of the cutoff size.
Information on the cutoff size of a size

gives insight on how to best use the filter.
Filters are often given as parameterized
families. If the dependence of cutoff size on
the parameters is known, we have a basis
for selecting the appropriate parameters for
a given task. One generally has some idea
what the smallest meaningful features in an
image are and this gives an upper bound on
the cutoff size. Filters are normally used to

remove noise, but within a parameterized
family of filters noise cleaning ability
generally correlates with cutoff size. More
noise cleaning forces a larger cutoff. Thus
we probably want to select the parameters

to give as large a cutoff as the upper bound
from the smallest features allows.

The noise cleaning performance of a
filter can be improved by applying the filter
repeatedly. For linear filters this is
equivalent to another linear filter with a
larger window, but for nonlinear filters with
a sharp cutoff size, iteration can be a real
improvement over single passes of any filter
in the same family. Two passes of a filter
with a sharp cutoff will produce an effect
that still has a good cutoff that is still
about the same size. Thus we can increase

the noise cleaning without a comparable
increase in cutoff size.

We see that measurements of a filter's

cutoff size and noise cleaning ability are
fundamental descriptive parameters. This is
particularly true of nonlinear filters that
cannot be described by a transfer function

using Fourier techniques. In this paper, we
will define our filters and then begin the

task of describing their characteristics.
The second section of this paper is

devoted to the definitions of the various

filters and some general discussion of how
to use the filters. The basic concept of the

contiguous K-average filter can be realized
by several distinct algorithms that will
produce slightly different results starting
from the same image. We will discuss some

of the possible variants. We will relate the
filter's parameters to information about the
size and geometry of the features of interest
in an image.

The third section develops some of the
basic theorems and properties needed for

measuring and describing the performance
of filters. Filters operating on a fixed

pattern or template are used in the
development. In the fourth section, we

develop a technique for measuring the noise
removal performance of a filter within a
homogeneous feature. This technique does
not measure the filter's ability to preserve

edges. What we are studying is the effect
of the parameters K and window size on
the amount of noise removal. This

investigation leads to several interesting
open questions.

In the fifth section, we study root
structures and iteration. A root structure

for a filter is an image that is not changed

by the action of the filter. In addition to
their importance for the study of the effects
of iteration a filter, root structures are of
some interest in their own right. Iteration,
repeated use of a filter, is a standard
technique for improving the performance of
a filter. We will give some theoretical
results involving root structures and some
empirical results involving iteration applied
to real images.

In the sixth section, we give three
demonstrations involving the contiguous

K-average filter. The first demonstrations is
a comparison test involving several filters

action on a synthetic image with noise
added to it. This test compares the filters'
ability to preserve edges. The second
demonstration is also a comparison test.
We consider the effect of filtering as a

preliminary step before an analysis
algorithm; in this case a thresholding
operation and then an interface length
calculation. The third demonstration shows

the ability of the contiguous K-average
filter to use information from other channels

of multichannel input to guide the

smoothing away of noise.



DEFINITION OF THE CONTIGUOUS
K-AVERAGE FILTER

In this section we will define several

variant forms of the contiguous K-average
filter, as well as the class of fixed template
filters, and for completeness, the K-average
filter. All these filters are transformations

acting on the set of images. An image is a
real valued function defined on an N by M
grid. The positions of the grid are ordered
pairs, (x,y), of integers with x between 1
and N and y between 1 and M. These

positions are usually called pixels. The
value, P(x,y), of the image P at the pixel
(x,y) is usually called the gray level of the
image at the pixel or just the gray level of
the pixel. For simplicity, we will often
speak of single channel data as above, but
in practice our images are often
multichannel data, and the gray level of a
pixel will be a vector of reals rather than

just a single real.

Notice that we are defining the gray
levels to be real numbers. This is to

simplify arithmetic. In practice, the gray
levels would normally be discretized to a
finite number (such as 256) of possible
values. We will dispense with this level of
realism for most of the paper because the
resulting complications obscure the points
we are trying to make.

All three types of filter operate
according to the following scheme. The
pixel whose value is to be updated is at the
center of a W by W window. Some of the
pixels in the window are selected. The

updated value is a function of the gray
levels of the selected pixels. There are two
possible sources for variation. One is the
function.

In general, the function is some sort of

average of the values. The pixels selected
are supposed to be from a single
subpopulation and the value derived from

them by the function is the "typical" gray
level of the subpopulation. Two usual
candidates for the function are the
arithmetic mean, which we will hereafter

call the average, and the median. Except
in section six, we will confine our attention

to the average.

The other and more important source
of possible variation is the rule for selecting
pixels from the window. The simplest rule
is always to take the same pixels, relative
to the window. This leads to fixed
template rules which we will discuss below.
As one would imagine, fixed template rules

are too rigid to be really good filters. If we
wish to preserve edges, the filter must be
adaptive, selecting pixels based on what is
in the window.

The K-average filter is one good way
to do this. The algorithm selects the K
pixels in the window whose gray level
vectors are the least distance from the gray
level vector of the center pixel. The
justification is clear; pixels in the same

feature should have _ray level vectors that
are very close together. If the data are
assumed to be multichannel, so that each
pixel has a vector of gray levels associated
with it, the algorithm smooths one channel
at a time but it uses information from all
channels to make pixel selections.

A possible problem is also clear.

Suppose that the center pixel's gray level
has been badly perturbed by noise. Its
gray level vector will thus be far from most
of the other members of the feature that

are around it. But there may either be
other similarly perturbed pixels scattered
around the window, or another feature in

the window whose characteristic gray level
more closely matches that of the perturbed
pixel. The K-average algorithm will pick
up other outliers, or the other feature,
before taking the more typical pixels of the

true feature. Since noise is not usually well
correlated between channels, this is mostly
a problem for one channel data. The

problem can be partially countered by using
a small window and iterating the filter.
This is not a satisfying solution, for reasons
of time, and because it adds the question of
how many iterations are needed or can be
tolerated. These problems are weaknesses
of the K-average filter, which the
contiguous K-average filter fixes.

The selection logic of the contiguous
K-average filter is an extension of the logic
of the K-average filter. A contiguous

K-average algorithm selects the averaging
set inductively, building one pixel at a time
starting from the center pixel. To add
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another pixel, the algorithm first computes
the average vector of the values of the
pixels already selected. It then looks at all
currently nonselected pixels within the
window that are adjacent to a selected
pixel. From these it selects the pixel that
is closest to the current average vector.
Closeness is computed as it was for the

K-average filter, using the L1 distance
measure. That is, the distance between two
vectors is the sum of the absolute values of

the differences of corresponding components.
The version of the algorithm used in

this paper, module FLSIFT of the package
ELAS [2], has a feature that allows the
channels of a multichannel image to be
weighted. The formula for the distance
between two vectors is modified by
multiplying the absolute values of the

component differences by the appropriate
weights before adding them up. The channel
weights can be set up to allow one channel

to guide the processing of another channel.
The guide channel gets a large weight and
the other channel gets a low (or zero)
weight. We will illustrate this useful
technique in section 6. There are obviously
several points at which this procedure could
be changed. Another distance measure,
such as the L2 or L® metric, could be used,
or, the distance could be measured from the
center pixel's vector rather than the

currently selected set's average.
The selection rule described above

leads to another possible source of variation.

That is the rule for breaking ties when
adding pixels to the selected set. If there is
more than one pixel at minimum distance
from the currently selected set's average,
the programs used to produce the data in
this paper select the first minimal distance

pixel encountered as the neighbors of the
selected set are searched. We will call tie

break rules of this type first appearance tie
break rules. This kind of rule is clearly
very easy to program and it works well in
practice. There are several variants of this

rule because of the different ways to scan
the neighbors. Ties will be rare for
multichannel data and not all ties affect the

final composition of the selected set.
However, ties are more common in one

channel data and they can be seen to have
a small effect on the filter's output for real

world images as well as contrived, artificial
images.

When breaking ties two kinds of
problem arise. When one of two

equidistant pixels is added to the selected
set, there may be more pixels with values
just beyond it. The cluster average is
pulled toward these points by the choice of
the first point and they may be selected
next. This may happen repeatedly so that
the other equidistant point is never
selected. The effect is to introduce
artificial breaks into what should have been

smooth gradients. The other problem arises
when adding all the equidistant pixels
would give more than the required number
of neighbors. Picking different subsets of
the equidistant points can change the result.
This effect can also introduce artificial

breaks into smooth gradients.
A type of rule that we will call a

balanced tie break rule addresses the above

problems and leads to algorithms with
slightly better theoretical properties. A
balanced rule adds all the equidistant
neighbors to the selected set at the same
time. If this results in more than the

required number of neighbors, the rule
attempts to produce a prorated value from
the set of equidistant pixels and then use
that value with the rest of the selected set.

Exactly how this is done depends on the
function being used but it is easily
accomplished if the function is either

average or median.final source of variations involves

the behavior of the algorithm at the
boundary of the image. For a given
window size, we define the boundary of an

image as the set of pixels where the full
sizea window will not fit within the image.
The version of the algorithm used to
produce the data in this paper simply
computed no result for boundary pixels. To
compensate for this limitation, the images
used in this paper had the boundary
trimmed off after filtering and before
statistics were computed for them. There
are several reasonable approaches to deal
with boundary pixels. One, which we will
call the truncated window boundary rule, is
to proceed as usual using the part of the

window that falls within the image. If
more neighbors are needed than the window



contains (for normal processing, this would
only happen at the four corners of the
image) then simply use all the pixels in the
window. Another approach, which we will
call the proportional boundary rule, is to
reduce the number of neighbors used so
that the number used is, as nearly as
possible, the same proportion of the window
as the full number of neighbors is in a full
window. When the number of neighbors
has been chosen to preserve a certain size
feature, the proportional boundary rule will
give a number of neighbors that is
appropriate for the intersection of the
desired size feature with a truncated
window. Thus features of the desired size

will be still be preserved within the
boundary area. As with the various tie
breaking rules, the choice of boundary rule
is often not of great practical significance
since for many images the boundary is
ignored anyway.

The major disadvantage of the
contiguous K-average algorithm is its time
to execute. On the Laboratory's computer,
a Concurrent 3280, a moderate sized image,
a 1000 rows by a 1000 columns, can take
several hours to process when K is in the

range of 7 to 11. Compensating for this is
the fact that processing additional channels
or bands does not result in a proportional
increase in processing time. This is because
the time consuming construction of the
duster is only performed once. The
algorithm as implemented in the Laboratory
also retains a memory of which pixels were
first added to a new cluster. If the next

pixel to process is one of the early ones
added to the current cluster, it assumes the
duster pattern will be the same and
reproduces the final value for the next

pixel. This yields approximately a 15%
decrease in processing time in real
applications.

Action of the contiguous K-average
filter is controlled using the window size
and K, the number of neighbors to cluster.
The parameter K controls the amount of
smoothing. The relative sizes of K and the
window determine the type of blurring that
occurs. The larger K is, the more
neighbors are used to compute the new
value at a point and the greater the
smoothing. If all these neighbors can be

taken from the same feature then a large
set of them will give a value that is more
reflective of the whole feature. Of course
window size influences the size set that can

be picked from one feature, but even more
important is the nature of the feature itself.

The filter moves from just smoothing noise
out, to blurring the feature, as K exceeds
the number of pixels in the window which
are also in the feature. Then some of the

neighbors selected will not belong to the
feature and the filter's value will not be as

representative of the feature. To
summarize, a good strategy is to pick the
window size first and then K. The window

size should be large enough to contain
several points of the smallest features of
interest but not much larger than the size
of the smallest features of interest. The

parameter K can then be set to a little bit
less than the size of the intersection of the
window with the smallest features of
interest.

Edge preserving filter is the traditional
term for the class of filters discussed in this

paper, but that term is a serious
over-simplification. A distinction must be

made between edges and small detail.
Abstractly, an edge occurs where one
feature or subpopulation changes to another.
In practice, an edge is indicated by a
gradient in the local average of the gray
level and this signals the location where the
one feature changes to another. The term
edge usually suggests that the boundary
between the regions is relatively straight at
the scale of the window. The speed with
which the change between regions occurs
affects the way that a filter treats the edge.
For our purposes, we define an edge as a
discontinuity in the local average gray level
that happens in the span of one or two

pixels. Slower changes will be called ramps
in this paper. We make this distinction
because of the behavior of different filters

with such data. Some filters, including the
contiguous K-average filter, will see ramps
as a series of parallel edges. There are
other kinds of features that appear in
images that cannot be treated as edges
when using the contiguous K-average filter.
Examples include corners, one pixel wide
linear features such as roads and bridges,
small rectangular shapes such as buildings,
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small circles such as center pivot irrigation
fields, and highly curved thin features such
as meandering rivers and streams.

Categories of features occupy
characteristic proportions of a window.
When the center pixel is on an edge in the
above sense, it will have just over 50°£ of
the window in the same region as it is.
Specifically, for a W by W window, where
W=2r+l about (r+l)/W of the window
will be in the same feature as the center

pixel. A contiguous K-average with K less
than (r+l)*W should only be averaging the
center pixel with other pixels from the same
region. Thus we say, in simplified form, K

must be less than 50% to completely
preserve edges. A different example is one
pixel wide roads. A pixel on a road is part
of a feature whose relative size is

determined by the width of the window,
usually being the window diameter W.

Unlike edges, this is not a fixed percentag.e
of the window. A final example is

rectangular buildings. An aircraft scanner
image of a city at 5 meter resolution will
have many rectangular features ranging in
area from 4 to 20 or more pixels. Only
when the window is at least 5 by 5, will

the larger features have a fixed size in the
window.

7



FIXED TEMPLATE FILTERS

When comparing the performance of
the contiguous K-average filter to other
filters, the K-average filter would be a
natural starting point. However, we find
that a simpler class of filters is a more
instructive place to begin. The fixed
template filters simply average over K
pixels in a fixed set of positions. The
invariance of the selected positions leads to
filters with behavior that is easier to

analyze, and still provides a useful baseline
for the more difficult analysis of the
contiguous K-average filters.

A template is a set T of ordered pairs
of elements of {-1..1} X {-1..1} for some
integer 1. Think of the elements of T as
being offsets from the center of a (21+1) X
(21+1) window. Here K is merely a formal
window size and it could be larger than the
smallest radius of a window that contains
T. We define the actual window radius
needed as follows: let

R(T) = max ( max (lil,',jJ,))

where the outer max is over all pairs (i,j)
in T. A template is said to be anchored if

and only if 10,0) is in the template. (0,0)
is called the center of the template.
Anchored templates contain their centers.

We are mostly interested in anchored
templates but we do not always need to
exclude templates that are not anchored.

Before defining template filters we need
to define some sets that help specify a
filter's behavior near the boundary of an
image. The set of allowable positions of T
at (x,y) is

A(T;x,y) = { (i,j) T I 1 <_x+i _< N and
1 _< y+j _< M}.

A(T;x,y) is the set of template pairs that
actually fit inside the image when the

template is placed at the location (x,y).
The template filter for T applied to an
image P gives the following value at pixel
(x,y)

0 A(T;x,y) emptyF(T:P;x,y) = 1 J Z P(x+i,y+j)
alA(T;x,y),

i,
A(T;x,y). We use the notation IS] to
denote the number of elements in the set S.
Note the case with value 0 will not occur

for anchored templates since A(T;x,y) will
alwa_rs contain at least the pair (0,0). See
[5,16] for some work with non-square
templates using order statistics rather than

averages.
The template filter F(T:P) is clearly

linear in the image variable P but it is not

spatially invariant because the sum changes
near the boundary of the image. This
means that the standard Fourier transform

theory for linear spatially invariant filters
cannot be directly applied. Nonetheless we
can deduce many properties of these filters.
We start by examining the effect of the
template filters on the average gray level of
an image and on the standard deviation of
the set of gray levels. The hit set of T at
the pixel (x,y) is

H(T;x,y) = { (i,j) pixels _l (x-i,y-j) E T }.

H(T;x,y) is the set of pixels (i,j) such that
the template hits (x,y) when the template
is placed at (i,j). We can now define the
weight function image of the template T

W(T;x,y) = Z 1 ,
,'A(T'i, , j),

where the sum is over the elements (i,j) of
H(T;x,y). Note that W(T) is an image;
some ot its properties will be given after
the theorem below.

The mean value, Mn(P), of image P is
defined in the obvious manner

JLn(P) = 1 Z P(x,y)
N_

where the sum is over all pixels (x,y). The
standard deviation can then be defined as



SD(P) = 4 Mn((P - Mn(P)) _)

Here Mn(P) is interpreted as an image with
all gray levels equal Mn(P) and then the

images P - Mn(P) and (P - Mn(P)) _ are
computed by pointwise operations.

Txzoazl_ 1 Mn(F(T:P)) = Mn(W(T)P).
The product W(T)P is
performed pointwise.

PROOF.

Mn(F(T:P))

NM IA(T;i , j),

P(x+i ,y+j)

[iIA(T; i , J) I

In both expressions the outer sum is over

all pixels (x,y) and the inner sum is over
all pairs (i,j) in A(T;x,y). We want to
rewrite the sum so that it is over (a,b)
where a=x+i and b=y+j. In this form the
inner sum over (i,j) is rewritten as being
over (a-x,b-y) and the condition is that this
be in T. But that is equivalent to (x,y)
being in H(T;a,b).

Mn(F(T:P))

= Z P(a'b)l Z 1
NM IA(T; i , J)l

:

Here again the outer sums are over all
pixels (x,y) and the inner sum in the
middle expression is over H(T;a,b).

Corollary 2 If T is an anchored template
then Mn(W(T)) - 1.

P_00F. Define a constant image P where
all pixels have value 1. Then F(T:P) = P
because the average value over each
A(T;x,y) is dearly 1 and A(T;x,y) is never
empty because T is anchored. We can find
the mean of W(T) as follows:

= Mn(P)

Mn(F(T:P))
Mn(W(T)P)
Un(W(T)).

Txz0_ZM 3 If.R(T) < x < (N - R(T)) and
R(T) < y < (M-R(T)),
then W(T;x,y) = 1.

PROOF. If x and y satisfy the indicated
inequalities then the template T can not

reach the image boundary when it is
located at (x,y). Thus H(T;x,y) has the

full liT IIelements and A(T;i,j) = T for each
(i,j) in H(T;x,y). Thus

W(T;x,y) = ,T,''*
1

awl
t I

=1.

Thus if N and M are large with respect to
R(T) then W(T) is l's except right around
the boundary.



THE EFFECTS OF FILTERS
ON STANDARD DEVIATION

Removing noise from an image and
also preserving features seem to be
conflicting goals. To the extent that these
goals do conflict, a filter must make

trade-offs between methods for reducing
noise and those for retaining edges and
small details. To understand how noise

removal is being traded for feature
preservation, we must be able to measure

each separately. A figure of merit that
combines the amount of noise cleaning with
the amount of feature preserving can be fine
tuned for a specific task, but a different
task will require a new figure of merit. See
Pratt [37] and others [12,19,36] for examples
of figures of merit and their use. In this

section,we will measure the noise removing
ability of our filters applied to uniform

white noise images [1,15,16,27,31]. As for
feature preservation, we discussed the

influence that feature size and geometry
should have upon parameter selection in

section 2. Later, in section 8, we will give
some test results comparing the ability of
several filters to preserve and enhance edges
that have been degraded by noise.

We want to model the interior of a

single homogeneous feature. In the
following, we use a normal model where the

pixels are samples from a normally
distributed population with some fixed

mean and variance. We generated test
images using this model and ran the filter
with varying values of K and window size.

To avoid boundary effects, the images were
trimmed after filtering and then statistics
were obtained for the trimmed images.
After picking a window size, we filtered the

image with K, the number of neighbors,
varying from 1 to the entire window. We

computed statistics for the filtered image
and graphed the results against K.

The results for a fixed template filter
provide the basis for comparison. For a
template T, theorem 1 from section 3 shows

that the expected value of the image mean
of F(T:P) will be the same as the mean of

the original image P. We would presume
that the same would be true of the

K-average and contiguous K-average filters
and that is what we found.

The behavior of the standard deviation

is more interesting. As expected, for all
three types of filters, the filtered image
standard deviation showed a strong and
consistent decrease as K increased. In

order to study the size of this decrease, we
compared the decrease in variance with

increased K for the contiguous K-average
and the K-average filters to the decrease in
variance obtained by the fixed template
filters. A similar idea, using ratios of mean
local variances can be found in [15]. The
expected value of the image standard
deviation of a fixed template filter can be
found by an elaboration of the method used
to derive the standard deviation of the

sample mean of fixed sized samples from a
distribution. We find that

E(SD(F(T:P))) = E(SD(P))

Let us denote the result of applying
the contiguous K-average filter to image P
using K neighbors as Sift(k,P). Then
Sift(1,P) - P and Sift(W*W,P) is a fixed
template filter whose template is the entire
W X W window. For fixed template
filters, the effect on the image standard
deviation of using a template of size ITll is
to divide the standard deviation by the
square root of ITI. Therefore we normalize
the standard deviations of the filtered

images as follows:

NSD(K,P) = SD(Sift(K,P)) *

SD(P)

NSD is thus exactly 1 for K = 1. When K
= W*W the filter is a fixed template filter
and the expected value of the standard

deviation will be the original standard
deviation divided by W. Thus NSD returns
to value 1 on average when K = W*W and
in fact it is usually very close to 1 in

practice. The shape of the graph of NSD
against K is very consistent. The graph
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rises from 1 to a maximum at 3/8 of the
full window and then falls back to 1 again.
The value of the maximum depends on the
window size.

We would like to study the expected
shape of the NSD curve and make
comparisons between curves for different
window sizes. To do this we will further
normalize the curve and talk about the

expected values of the functions rather than
the values observed for any fixed random
normal image. We do not have a
theoretical derivation of these expected
values at this time, so we can only discuss
the expected values by studying the
distribution of observed values. We
normalize the domain of our function from

[1,W*W] to [0,1] by converting from the
independent variable K to the normalized
variable t where

K-1
t -- "

W 2--1

The maximum now occurs at t = 3/8 for
all window sizes. The next thing to do is
normalize the actual value of the maximum.

Let us define M(W) as the expected value
of NSD at t = 3/8 for an W by W window.
Next we define an image statistic

H(W,t,P)= NSD(K,P)-I

W(W)-I

We can now define the function H(W,t) as
the expectation of H(W,t,P) as P ranges

over the _iven set of normal images. The
notation snows no dependence on the mean
and standard deviation of the normal

distribution used to produce the set of
images; this is because the functions do not
depend on the distribution parameters.
Since the K-average and contiguous
K-average filters scale linearly, NSD and
hence M and H are scale invariant. This

means that the model image standard
deviation has no effect on NSD (which was
part of the point of its definition.) The two
filters also shift with offsets of the data so
that the distribution mean does not affect
NSD or M or H. Notice that the notation

does show a continued dependence on the

window size W. We had hoped that there
would be no dependence on W but the
results reported below show that is not the
case. Fixing W for a moment, we state the
properties of the function H. The
properties that do not follow from the
definition are hereby offered up as

conjectures. H(0) = 0, this is by definition.
H(1) = 0, this would follow from the result
on the expectation of the standard deviation

of a fixed template filter. H(t) is unimodal
with its maximum occurring at t = 3/8.

H(3/8) = 1 by definition.
We have made many runs to begin to

estimate the functions M(W) and H(W,t).
Since there is necessarily variance in the
results, the values obtained and the
conclusions we can draw have some range of
uncertainty. Let us discuss the values for
M(W) first. We generated a normally
distributed random image of size 250 by
1000 using a random normal generator with
mean 128 and standard deviation 30. We

processed the complete image with t = 3/8
for odd sized windows from 3 by 3 to 19 by
19. The results are recorded in Table 1. A
border of width 10 was removed from the

processed image before the statistics in the
table were computed. The version of the
filter used did not have a boundary rule to
apply to these points. Also in the table are
partial results for 21 by 21 and 31 by 31.
The 21 by 21 result is based on 10580
points and the 31 by 31 result is based on
23980 points with the border increased to
width 15. The program is quite slow by

the time we are clustering 166 neighbors for
the 21 by 21 window and 361 neighbors for
the 31 by 31 window, so we only ran a
sample to check extrapolations based on the
other data. Also shown in the table are the

corresponding values for the K-average
filter. These were obtained from a 200 *

200 file, with a border of width 10 removed
from the processed image prior to
computation of statistics. Thus 32,400
points are used in each determination.

M(W) is roughly linear for both filters.
If the filtered standard deviations did not

change as W increased, the NSD's would be
almost exactly linear. For the K-average
filter, the filtered standard deviations do
not change much for W greater than 9, but
a linear fit to the whole data set would
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make errors larger than the uncertainty in
numbers. A quadratic fits the whole data
set to adequate precision but should not be
used for extrapolations. The values for the

contiguous K-average filter are significantly
sublinear since the filtered standard
deviation continues to decrease. As for the

K-average, a linear fit to the data set, up
to 19, gives errors that are too large, but a
quadratic gives an adequate fit. Test
extrapolations using the values for W=21
and W=31 show that quadratic and even
cubic fits do not give good enough
predictions for W=31, although W=21 is
satisfactory.

To study H(W,t), we ran many small
random images rather than one big image,
so that variance could be studied. Figure 1
shows the results for window sizes 3, 9 and

21 done with the contiguous K-average
filter (labeled SIFT). Also shown are the
results for K-average with a window size of
7. Data for the contiguous K-average, for
W _< 9, was produced using 100 by 100
images with a half window width trimmed

after processing. H(W,t) does change
systematically with W. The shape of the
function for other W values can be

interpolated from the curves given. Curves
for the K-average filter are similar in

appearance to those of the contiguous
k average filter. For t < 3/8, the
K-average values closely match the
contiguous K-average values, but are about

0.02 smaller. For t > 3/8, the K-average
curves move up from the curve for W=3,

whereas the contiguous K-average curves
move down. Note that the two filters are
the same when W=3.

The H(W,t) values can be
approximated to an accuracy comparable to
the observed standard errors using a four
dimensional space of cubic splines. Let

B(i,t) be the i th normallized B-spline of the

order 4 for the knot sequence (0.0, 0.0, 0.0,
0.0, 0.1, 0.6, 1.0, 1.0, 1.0, 1.0). See [3, p
108] for the definition of B--splines used.
We can write an approximation

5

It(V,t) _ Ep(i,W ) B(i,t)

i=2

where the p(i,W) are the following
quadratic polynomials in W:

p(2,W) = (-8.73E-4)W 2 ÷ (3.704E-2)W +
0.1865

p(3,W) = (1.27E--4)W 2 + (-3.702E-3)W +
1.1596

p(4,W) = (--4.33E-4)W 2 + (8.918E-3)W +
1.0030

p(5,W) = (5.83E-4)W 2 + (-3.451E-2)W +
0.3588.

This approximation is good for W ranging
from 3 to 21. Significant errors occur only
for W > 9 and T < 0.02. For an extreme

example, with W=21 and t=0.0045, the
approximation is 56% of the observed value.
We comment though, for t values this
small, the size of the window is irrelevant
and the standard deviation is best estimated

by un-normallizing the values for a smaller
W.

12



STABLE IMAGES AND ITERATION

One property of nonlinear filters that
should be studied is the question of stable
images or root structures. A stable image
is an image that is not changed by
application of the filter. If the filter is
considered as a transformation of the space

of images, then stable images are the fixed
points of the transformation. One reason

for studying stable images is the dynamical
systems viewpoint. Iterating the filter
produces a dynamical system on the space
of images. Typical behavior for such
systems is that repeated passes through the
filter produce a series of images that
converge to a fixed point of the
transformation. This is assuming that the
dynamical system has no attractors other
than its fixed points. [13] proves that the
one dimensional median filter has

convergence to fixed point after a bounded
number of iterations. In [33] this analysis
is extended to one dimensional rank order

filters other then the median. The only
stable images for the rank order filters,
other than the median, are constants and
there is again convergence to a fixed point.
They also show that the recursive median
filter produces a fixed point after one pass
and they comment on some the difficulties

on extending this analysis to two
dimensional filters. The two dimensional

separable median filter was analyzed in [34];
while most images converge to a fixed point
under iteration, stable cycles of length two
are possible. See Tyan in [17] for further
discussion of root structures for the two
dimensional filters.

The stable images for some fixed
template filters can easily be determined.

We would expect that constant images are
the only stable images for fixed template
filters. There is a complication however.
The problem can be illustrated using the
game of chess. To a chess bishop, the chess
board breaks up into two separate domains,
the white squares and the black squares.

Although the white and black squares seem
to be close together, the diagonal moves of
the bishop make them separate worlds.
Similarly the pixels of the image grid will

break up into mutually unreachable sets for
certain templates. It is also possible that
information from pixel x can reach pixel y
but not vice versa.

To make this precise, we define a

reachability graph for anchored templates.
The teachability graph is a directed graph
whose vertices are the pixels. This is
illustrated in figure 2 (b), where the pixels
have been labeled 1 through 12. The
template appears in part (a)with (0,0)
marked by an asterisk. The other two cells
of the template are (0,1) above and (-1,-1)
below and to the left. Placements of the

template on the grid give the edges of the
reachability graph. A placement of the
template produces edges directed from the
center to each pixel covered by the

template (including a loop which has been
omitted that goes from the center to itself
because the template is anchored.) Part (c)
of the figure shows the resulting directed

graph. A directed .graph is said to be
strongly connected lI any vertex can be
reached from any other vertex by following
a directed path.

THZ0RZM 4 If the reachability graph of a
grid for an anchored template
is strongly connected then the
only stable images for the
fixed template filter are the

constant images.

PROOF Look at the maximum value of a

stable image. This maximum is supposed to
be the average of the values covered by the
template when centered at the maximum
pixel. The only way the average can equal
the maximum is if all the pixels covered
take that same maximum value. We have

now propagated the maximum value one
step on all directed paths from the original
pixel. By induction, we can continue down
all the directed paths and by hypothesis we
will get the entire image this way.

If the teachability graph is not strongly
connected it is still possible that the only

stable images are the constant images.
This is the case for the template in figure
2. A complete analysis of the stable images
for a general template could be done using
Markov Chain theory, but that would take
us too far afield. Also, note that some
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unanchored templates have no stable images
except the constant zero map. The left
shift (with T={(1,0)_) is an example.

This sort of result leads one to ask

how the value of the constant in a limiting
constant image depends on the original
image. This question can be reformulated as
a standard mathematical task, the
computation of eigenvectors. Let us
represent the image's gray levels as a row
vector of values and the anchored fixed

template filter as a matrix, F, that acts on

the image vectors by multiplication on the
right. The columns of F will be all zeros

except for a=llA(T;x,y!l entries each of
which is 1/a. Thus if J is a row vector with
all entries equal 1, we obtain J*F = J.
This shows that F has a left eigenvalue of 1
with eigenvector J. Since the template is
anchored, F has entries 1/a on it diagonal.
If we apply the column form of
Gershgorin's theorem [see 35, p317, and
p321 problem 6], we see that the
Gershgorin circles have centers 1/a and
radii (a-1)/a. Therefore 1 is the dominant
eigenvectors of F and there are no other

eigenvalues of F with eigenvalues greater
than or equal to 1 in absolute value. Since

the right eigenvalues of F are the same as
the left ones, we conclude that 1 is also the
dominant right eigenvalue. Let C be a right
(column) eigenvector for the eigenvalue 1
and suppose that C has been scaled so that
the sum of its entries is 1. Then C satisfies
J*C=I and F*C=C.

LzuuA 5 Suppose that constant images are
the only fixed points for the fixed
template filter of T on a certain

grid and that every image tends to
a constant image under iteration by
the filter. Then the value of the

constant for image A is A*C.

PROOF A*C = A*F*C
= A*F*F*C

• • i

_- A*Fn*C.

Let L be the constant value at each pixel of

the limit of A under iteration by F. Then

A*C = A*Fn*C

= (1 i m A*Fn)*c
n--4 m

= (LJ)*C

= L(J*C)
-'-L.

If T is a template with a strongly
connected teachability graph for a given
grid then the hypothesis of the above
lemma holds. In that case the matrix F is

regular and the Perron-Frobenius theorem
[see 35, pp 374-376] shows that C is unique
and has all entries greater than or equal to
0 (and hence less than or equal to 1.) We
can summarize by saying that the limit
value of a image A under iteration by F is
a convex combination of the values of A.

For certain symmetrical templates, the
coefficients of this convex combination are

easy to describe.
An anchored template T is said to be

centrosymmetric if and only if (x,y) in T
implies (-x,-y) is also in T. Another way of
stating this condition is that the template
is fixed by a half turn about its center.
Centrosymmetric is equivalent to

(x,y) E H(T;u,v) ¢:::, (u,v) E H(T;x,y) (1)

since (u-x,v-y) in T if and only if (x-u,y-v)
in T. Yet another restatement of

centrosymmetry is that the reachability
graph of T on any rectangular grid is
undirected. This follows from the fact that

Eq. 1 implies that two vertices of the
reachability graph that are joined by an
edge in one direction must also be joined by
an edge in the reverse direction.

THEOREM 6 A centrosymmetric template T
on any grid has a right
eigenvector C for eigenvalue 1
whose component for the pixel
(x,y) is ',A(T;x,y)l.

PROOF The column of the matrix F

corresponding to the pixel (x,y) has exactly
IiA(T:x,y)_ I nonzero entries, each of which is
1/IA(T;x,y)l. The locations of the nonzero
entries are the pixels covered by T when it
is placed at (x,y). Consider the row of F
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correspondingto (x,y). The nonzero entries
of this row are the pixels (u,v) such that T
cover who •  l ced (u,v)
Since Tis centrosymmetric, these are
exactly the same pixels as those giving the
nonzero entries in the column corresponding
to (x,y). Consider the product of the row
corresponding to (x,y) with the column
vector C. Each nonzero entry of the row
will have a value 1/_AIT;u,v)_I and will be
multiplied by _A(T;u,v)_ giving a product of
1. There are exactly IA(T;x,y)l such

rOducts. which yields a total value of
(T;x,y/l. But this is just the value of C

again and we have F*C = C as claimed.
This result shows that the limit value

of an image P under iteration by a fixed
template filter with a centrosymmetric
template will be close to the average value
of P. The pixels near the boundary will be
weighted less than those in the center but
for a grid that is much larger than the
template, most pixels are away from the
boundary. For templates that are not
centrosymmetric, the convex combination
can be very different from this pattern. If
the template is unbalanced with more cells
in some direction, the components of the
eigenvector will not be all roughly similar
in size. Components in the direction
opposite that of the template will be very
small and components in the direction of

the template unbalance will be much larger.
The values of the image in the direction of
the unbalance will have far greater
influence on the limit value than the values

of the pixels in the opposite direction.
These results for fixed template filters

are in accord with known smoothing and
blurring effects of this kind of filter.
Repeated passes through a typical fixed
template filter produce a series of images
that converges to a constant image. These
filters are known for their ability to remove
noise, the drawback being that they also
attempt to remove everything else, too.
These filters can still be useful since a pass

through one will smooth out the very fine
grain detail which may be considered noise
and yet not do unacceptable damage to the

larger features which are considered to be
the true content of the image.

The set of stable images for the

contiguous K-average filter depends on K.

The larger K is, the smaller the set of
stable images. For K = 1, all images are
stable. For larger K we must specify a tie
break rule and a boundary pixel rule to
obtain a well defined transformation. The

set of stable images for a given K will
depend on the choice of tie break rule and
boundary pixel rule, as will be illustrated
below. The results below are not intended

to be a complete analysis of all cases. We
have picked some illustrative examples
where the stable set has a simple, clean
description and the proof is easy. In all the
examples below, the function of the K
neighbors is their average. The definitions
of the various rules are given in section 2.

THE01tEM: 7 Let the contiguous K-average
filter be specified as using a first
appearance tie break rule and the truncated
window boundary rule. The stable images
for the K = 2 case of this filter are those

images where every pixel is adjacent to
another pixel with the same gray level.

Proof. The specifications for the filter are
designed to insure that the filter value is
always the average of the value at the pixel
and at one of its neighbors. The average of
two numbers will only equal one of them if
the two numbers are equal to each other.
Thus in a stable image, every pixel is
adjacent to another with the same value.

The above set of images will be stable
images for the K = 2 case of almost any
specification of the filter that uses
averaging, but specifications other than the
one above generally allow additional stable
images. For example, a boundary rule that
causes corner or edge pixels to be updated
using only their own value will have stable
images that obey the above adjacency rule
in the interior but not on the corners or

edges. The set of stable images for K = 2
is thus seen to be quite large, even though
it is of course much smaller than the set for
K = 1. The idea of theorem 7 does not

generalize to values of K greater than 2.
For K = 3 (and greater) there are stable
images with pixels that have a value that is
not shared by any other nearby pixel.
These pixels sit between groups of pixels

with higher values and with low values, and
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they balance the two groups to preserve
their own value. The idea of theorem 7 is

mostly correct, however. Most pixels of a
typical stable image are contained in groups
of pixels that all have the same value.

At the other end of the range, when K
is equal to the full window size, we have a
fixed template filter. There is no need for
a tie break rule in this case and the

proportional boundary rule reduces to the
truncated window rule. By theorem 4 the
set of stable images is about as small as it
possibly can be.

We will now show that the set of

stable images is just the set of constant
images for values of K much smaller than
the full window. In fact, K need only be
somewhat over half the window to force

stable images to be constant images. In the
following, the window size will be W by W,
where W=2r+l.

THEOREM 8 Let the filter be specified as
using a first appearance tie
break rule and the truncated

window boundary rule. If K is
greater than W*(r+l) then the
only stable images are

constant images.

PR.00F. Let I be a stable image and
consider pixels where I attains its maximum
value. Since the average of the K
neighbors is the maximum observed value,
all K pixels must take this maximum value.
Take the set of pixels of I that have this
maximum gray level and look at a
connected component of it. Could a
component have a rightmost member before
the right edge of the image? No, it cannot.
A rightmost member must have at least K
elements of the window that are also part
of the component. But the maximum
number of elements of the window that can

all be no farther right than the center is
W*(r+l) and we have more than that
many. In a truncated window on the
boundary, K is an even larger share of the
window and so a rightmost member is still
impossible except when the truncated
window's center pixel is at the actual edge
of the image and there are no pixels farther
right. We see that the component must
extend all the way to the right edge of the

image. But the same argument shows that
the component must also extend to the left
edge of the image and to the top edge and
to the bottom edge. Now consider the set
of pixels where I takes its minimum value.
By the same argument as above, a
connected component of minimum value
pixels must extend to the right, left, top
and bottom edges of the image. This is
incompatible with the extent of the
maximum values component unless the
minimum value equals the maximum value
and the image is a constant image.

This result remains true for other

specifications of the filter. We used the
first appearance tie break rule to insure

that the average was always over K
numbers except at the boundary. Even
with the balanced tie break rule, the
average can be the maximum or minimum
only if all pixels involved take the same
extreme value. Thus the above proof also
works for the balanced tie break rule. We

used the truncated window boundary rule to
insure that the only time the average was
over less than K numbers was when it was

over the entire window. The proportional
boundary rule reduces K for windows in the
boundary but it does so in a fashion that
leaves the above argument valid. In
boundary windows near the top or bottom
but away from the right edge, K is reduced
but it is still large enough so that K pixels
cannot all fit into the window without at

least one of them being to the right of the
center. For windows in the boundary near
the right edge, K may be reduced enough
so that all K pixels will fit in the window
with none to the right of the window
center; however, the gap left is not large
enough for the component of minimum
value pixels to get past. Thus a different
value for maximum and minimum would

still leave two components trying to touch
or get very close to all four edges and that
is still impossible.

All the results above were derived

assuming exact arithmetic. In fact, real
world image processing uses floating point
or even integer arithmetic. Limited
precision arithmetic complicates the picture
presented above. In limited precision
arithmetic the average of two different
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numbers could be equal to one of them.

And the average of several numbers could
be an extreme observed value without all of

the numbers also being that same extreme
value. The various sets of stable images
will therefore be enlarged somewhat by
arithmetic oddities when limited precision
arithmetic is used.

To show the effect of iterating to
stability we give an example using a remote
sensing image. The raw image is figure 3a.
It is a 200 by 200 portion of channel 6
(11.2 /an to 12.2 pzn) of some data acquired
by a NASA airborne scanner called TIMS
(Thermal Infrared Multispectral Scanner.)
This particular acquisition was taken at
night over rural Alabama. The data is
recorded in an 8 bit format, although the

actual dynamic range in this image is only
about 5 or 6 bits. The image is very noisy
and some of the noise forms coherent

features (the many dark, horizontal lines.)
We used filter parameters K = 8 and a 5
by 5 window. Thirty iterations produced
the stable image in figure 3b. Notice that
the noise lines created some artificial

horizontal edges that were then built in to
the image by the filter. The horizontal
striping noise is not nearly as pronounced in
the other channels of the data; we could
have used multichannel distances if we were

really interested in clearing out all of the
noise from this image. We did not do this
because we wanted to show that a dogged
determination to preserve all edges can be
taken too far.

In a series of tests with a diverse set

of real images, we observed a consistent
response to repeated passes through the
contiguous K-average filter. This response
was a rapid stabilizing upon an image and
then all further change being confined to a
scattered set of fixed locations with an

extremely small total area. We will
illustrate this behavior with some examples.

In figure 4 we give examples of semilog
plots of the number of pixels changed at
each iteration of a filter. The measure of

change used, the number of pixels changed
in value, is a reasonable measure in this
case because the images in question are
8 bit data; so that very small changes in
value are impossible. If the images had
been floating point data, we could not have

done this since almost all pixels would have

changed their values at every iteration (but
most only by a very small amount.)

This measure of change clearly reveals
the two phases of the convergence to

stability. The initial phase would last from
5 to 15 iterations, depending on how noisy

the original image was. During this phase
the decline preceded at an approximately

eometric rate modeled by a formula of the
rm

C = MR n

where C is the measure of change and n is
the iteration number. On a semilog plot

like figure 4, a decline at an exactly

geometric rate would appear as a straight
line. For all images tested, we found that
change initially decreased at rates that
could be reasonably well modeled by

geometric series.
Once the geometric decline phase was

finished, further iterations of the filter
produced a new pattern of change. This
change was confined to a few scattered
areas of the image, whose total area was
well below 1 percent of the image. For the
TIMS-ag data all changes past the
twentieth iteration occurred at just two
locations. The number of pixels changing
in this phase of the example, out of 40,000

total, ranged from 11 down to 1 at the end.
For all the images, the changes often
followed a pattern where a feature slowly

engulfs a small region on its border. We
like to think of the process as one in which
the filter nibbles away at a little, unstable
area, taking out a bite on every iteration.

The major variable controlling the
differences between data sets appears to be

how heterogeneous are the features in the
image. Complex images start with an
absolutely greater number of changes per
unit area, therefore they require more
iterations to reach stability. A second

variable may be the nature of the imaging
mechanism. Some methods of acquisition

are inherently two dimensional, for example
airborne and satellite scanners. Others are

inherently three dimensional. Specifically,
in this case the MRI and the thin section of
sandstone. Three dimensional boundaries
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produce ramps when projected into a two
dimensional cross section. We suggest that
the noticeably different slopes between these
two data sets and the other data sets is

caused by this.
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DEMONSTRATIONS

In this section we will give the results
of some tests comparing the contiguous
K-average filter to other filters. We will
also sketch three sample applications using
the filter. These are taken from research

projects at the Science and Technology
Laboratory. Our choices of test filters and
of applications were determined by
convemence, but we believe that they are
representative. The other filters for the

comparison tests: averaging, median and
K-average , were selected from the filters
already available in our image processing
package. We believe that these tests give a
fair assessment of the capabilities of the
contiguous K-average filter and show its
power as a edge preserving filter.

Two examples use synthetic images.
These were constructed specifically to show
the result of executing various filters on
selected types of features. The first images
are used primarily to illustrate behavior
with respect to well defined features. The
second example illustrates behavior with
respect to edges in the presence of noise.
Employing artificial data makes it simple to
generate qualitative measures of each filter's
effects. A third example uses multichannel
imagery from an airborne sensor. This is

given to show the efficacy of "guiding" with
real data.

Stripes

Construction

For the first comparison test, two sets
of three artificial images were generated.
All consist of parallel, diagonal stripes of
varying widths against a constant
background, see [24 and 26] for similar test
images. The stripes are at a 45" angle;
background intensity was set to 5. The
horizontal spacing between between stripes
was set to 4 pixels. The stripes themselves
have increasing widths as we scan across
the image from left to right. The first stripe
has width 1, the next width 2, and so on.
We used three different patterns for the
gray levels of the stripes; in all cases the

gray level within each stripe is constant.
The three images in each set differ in how
the digital values are given to the stripes.
One image has the stripes set at a constant
value, a second has increasing values from
stripe to stripe, starting just above
background; the third has a decreasing
pattern starting from an initial high value.

To one set of images, noise was added; to a
second set, multiplicative noise was applied.
The constant images have stripes set to 206
in the additive noise set, and 128 in the
multiplicative noise set. In both sets, the
increasing image has the value increase 1
count from one stripe to next, starting at 6
(1 above background) for the width one
stripe. In the images with a decreasing
pattern in the stripes, the value decreased
by 1 count from one stripe the next,
starting at 206 for the width one stripe,
additive noise, starting at 128 for the
multiplicative noise. The images have 100
rows and 200 columns. To avoid boundary
effects all statistics were computed using
only rows 16 through 85 and columns 16
through 185.

These images were designed to test and
demonstrate some critical aspects of filters
in actual applications: the relationship
between feature size and window size, and
contrast between feature and background.
Retention of features which are one pixel
wide and one count above background
simulates some of the most rigorous real
world requirements for filters. Spacing
between stripes was set so that 3x3
operators, working on a stripe would not
receive interference from other stripes, but

larger filters would.
The noise added to both sets came

from a random noise image having statistics
as follows. The 5762 points in the
background area had mean 127.4599 and
standard deviation 29.5148. The 6138 points
in the stripes area had mean 127.3763 and
standard deviation 29.8912. Additive noise

was inserted according to the equation,

DVou t = DVin+(DVnoise-128)*0.04

This produced a noisy image with
background mean 4.9039 and standard
deviation 1.2136 and with stripes mean
205.9110 and standard deviation 1.2303.
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Multiplicative noise was inserted
accordingto

DVou t = DVin+(DVnoise-128)* __

I)V.
in

105

This produced a noisy image with
background mean 5.0252 and standard
deviation 1.4366. The statistics for the

stripes area depended on the pattern of

values for the stripes. Image mean and
standard deviations after filtering are given
in Table 2.

Fized Template, average

The first test filter was a straight
average over a W by W window. This is
effectively a fixed template filter with the
template being a W by W square, anchored
at the center. We used W equal 3,5 and 7
and the blurring effects of this kind of filter
are readily apparent. The filtered images
had profoundly altered means and greatly
increased standard deviations. Note that in

the stripes area of the uniform pattern, the
step from W=5 to W=7 has produced so
much more blur that the standard deviation

actually decreased! In the increasing
pattern, the stripes have very low contrast
to began with and the filter virtually
obliterates all the narrower stripes.

Although the statistics _iven do not show
this, the averaging filter (particularly W=7)
has been very successful in removing the
fluctuations produced by the noise.

However, the price in edge destruction has
been high. When the standard deviation is
measured within features, the decreases in
standard deviation from noise removal are

swamped by the increases caused by
blurring in other populations.

Fixed Template, median

The next test filter, a median filter, is
a decent edge preserving filter. As above,
we used square windows with sides W equal
3,5 and 7. For W equal 3 and 5, the filter
performs well, significantly decreasing the

fluctuations and irregularities introduced by
the noise without significantly damaging the
edges except the first stripe in the W=5

case. For W=5, the first stripe is too small
to make a majority in the window and so
the filter cannot "see" the stripe and it is
wiped off the image. This same phenomenon
shows up strongly in the W=7 case. Here
the background between the stripes is too
small to be "seen" by the filter and the
background areas are obliterated, with the
result being the dramatic increases recorded
in the table.

K-average

We will discuss the last two filters,
K-average and contiguous K-average
together. The general size of the standard
deviations shows that either filter can give
reasonable results for any size window
provided an appropriate size K is selected.

The two parameters working, together give
good control of the cutoff sine. K-average
does suffer from a window size problem,
however. Note that the W=K=5 case
achieved a smaller standard deviation than

the W=K=31 case. When W=31, the
K-average filter has 961 pixels to search for
30 values similar to the center pixel. Even
if the center pixel is somewhat of an
outlier, there will be other outliers in the
same general vicinity and the algorithm will
pick some of them before working its way
down to the more frequent, more typical
values. The contiguous K-average filter does
not suffer from this problem since no
matter how big the window is, it must still
select pixels next to pixels that were
previously selected. Thus the W=K=31 case
of the contiguous K-average filter gives a
distinct improvement over the W=K=5
case.

K-average, guided

Both filters make substantial gains
when they are guided by a noise free
channel. The contiguous K-average filter
with W=K=5 was improved more by being
guided than by increasing the parameters to
W=K=31. The K-average filter lost the
large window effect and substantially
improved from W=K=5 to W=K=31 when

guided. For both filters, the guided
W=K=31 case produced an image with
very little noise left. The most stringent
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test for the filters was the first stripe of the
increasing pattern. It was only one wide
and one above background. For both types
of noise, the unguided filters lost the first
stripe and most of the second stripe, too.
The guided filters almost completely
recovered both stripes. Averaging the
correct 31 values was easily enough to give
a result that rounded to one higher than
the result of averaging 31 background
values. The guiding technique is very
powerful when it can be used; we give an
example application below.

Ramp8

Construction

In practice images are frequently
filtered prior to execution of other

operations. Within our organization, visual
interpretation frequently is not the reason
for filtering data. Therefore, to test and
demonstrate the effectiveness of filters we
must determine how filters of interest will

affect the results of further processing. We
feel that tests of a filter as a step to be
followed by other types of processing should
be part of the standard test suite, and there
are moves in this direction [see for example
5,7,9,10,28,41]. One example of a type of
further processing is the computation of the
boundary length between two classes. This
occurs commonly in our work, such as when
measuring the nature of the interface
between water and land classes in marshes,
or in determining the nature of the
interface between sand grains and pore
space in petroleum reservoir rock.

For this example application, we
created a synthetic image and two sets of

synthetic noise. The synthetic image could
be thought of as parallel strips of land
against a background of water. The strips
of land have sloping beaches on the left
sides and cliffs on the right sides.
Specifically, the image consists of vertical
bands which, read left to right, go from a
low background value (103), fifteen pixels
wide, slowly up to a higher value (153 or
163). After a plateau of fifteen pixels at the
high value, the level abruptly drops to the
background value, and then the cycle of

rise, plateau and drop begins again. The
slope or rate of change from background to
peak goes from 45 °, to 60 °, then 75", 80 °,
and 85 °. The visual effect is one of

increasingly steep ramps. We made this
construction to imitate the common real
world situation where the boundaries

between materials of interest are defined by
gradational changes, not discontinuities.

Two varieties of noise were then added

to the image of ramps. One consists of
normally distributed random noise; the
second consists of a pair of sinusoidal
waveforms of unequal amplitude and

wavelength. The two noises together very
closely mimic the type of noise in some
airborne scanner imagery (see figure 7,
channel 8 for an example.) Each of the

two noise sources were added to the image
of the ramps at 5 different intensities,

creating 25 images, Figure 5. Each image
was then filtered and classified into 2

classes - background ("water") and a peak
class ("land") - using a minimum spectral
distance algorithm that degenerates into a
simple threshold for one channel data such

as this. All pixels were forced by the
software into one or the other class. The

length of the interface between the two
classes was then computed. The process was
then repeated using different filters.

Results

The values of interface length are
shown in Figure 6. The first effect to
consider is the peaks for images 1, 6, 11, 16
and 21. These are the cases where the

harmonic noise is maximum. It is so large
that it caused the K-average and contiguous
K-average filters to generate values at the
harmonic noise peaks that were large
enough to be misclassified as land. These
two filters also broke the vertical strips of
land up into disconnected islands that were

then sometimes connected by horizontal
bridges of misclassified water and noise.
This created a classified image made up of
numerous horizontal islands, with an
attendant substantial increase in shoreline

length. The average and median filters did
not break up the strips of land, but they
produced a wavy shoreline whose length was
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more than triple the length of the straight
shorelines produced when there is no noise.

The other effect to consider is the

difference in results between the average
and median filters and the K-average and

contiguous K-average filters. Thresholding
after K-average type filters produced
complicated, irregular boundaries with very
large interface lengths. The average and
median filters restored all but the worst

images to smoothly changing gradients that
thresholded into relatively straight
boundaries with short interface lengths not
far above the no noise "true" answers.

CAMS Data

The last application demonstrates how
the multichannel form of the filter can use

relatively noise free channels to guide the
clean up of noisy channels. As indicated in
the comparison tests above, this guiding
technique can achieve levels of noise
reduction that are not otherwise possible.

The basic requirement for the technique to
work is multiple channel data where the
features in each channel exactly correspond
to the features in the other channels. There

need be no similarity in the actual gray
levels of the features, only that the features
occupy the same location pixels in each
channel. In other words, the channels must
be rectified to each other, and where there

is a boundary in one channel, there should
be a boundary in any channel used.

The requirement for mutually rectified
channels is fulfilled in the images produced
by the multichannel scanners used in
remote sensing. Figure 7 shows three
channels of an image acquired by the
CAMS scanner that is operated by our
laboratory. The device acquires 9
simultaneous channels of imagery from the
visible, near infrared and thermal infrared.
Image quality and the nature of the noise is
highly uneven between channels. The data
shown is from a flight along the coast of
Louisiana at Atchafalaya Bay. Principal
features in the image are the bayous, canals
and turbidity patterns in the ocean. We
used the relatively low noise visual channels
like channel 4 to guide the clean up of the
noisy near infrared channels 7 and 8. We
must remark that a photograph like figure 7

cannot fully convey the scope of the noise
in channels 7 and 8. The contrast between

the land and the water is too great to allow

a photograph to fully reveal the noise in
both.

The contiguous K-average filter was
run over channels 2-5, 7, and 8. We did not
use channel 1 because of intense haze,

which results in a very low contrast image.
This violates the second necessary
condition. Channel 6 was not used because

of its redundancy in this image with
channel 5. Channel 9 was not used because
it is the thermal infrared channel. Features

in the thermal infrared are often poorly
correlated with features in the visible and

near infrared bands, due to the
fundamentally different physics involved.
Thus the second basic requirement is not
meet.

For this demonstration, the high noise
channels, 7 and 8, were given a weight of
zero, other channels were each weighted 1.
We used a window size of 5 and a K of 8.
These choices were based on several
considerations. One "noise" has coherence
between channels, and appears as linear

"features;" these we wanted to try to break
up. This requires a K larger than the
window size. Further, we felt that no
feature of interest was smaller than

approximately 8 pixels and that one pixel
wide features were only moderately

significant. The thin straight features, oil
company barge canals, are at least two
pixels wide. If we had been more concerned
with one pixel wide features, we would have
increased the window size to 7.

The filter greatly reduced the noise and

significantly improved the quality of
channels 7 and 8. For example, notice how

the small bayous on the land in the lower
left part of channel 7 have been brought
out and clarified by the removal of the dark
speckle noise around them. Significant noise
remains in channel 8. The remaining noise
has a "wavelength" greater than that which
can be removed by a window of size 5.
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SUMMARY

The contiguous K-average algorithm is
a superior, edge preserving filter for image
processing applications. With suitable
parameter values, it can preserve edges and
other detail better than the other filters

tested and better than any other filter of
which we know, while still removing noise
at rates that do not lag greatly behind
similar sized mean filters. Based on many
studies of noise cleaning by local filters, for
examples see [6,7,26 and 27], we believe
that mean filters can serve as the

performance goal for the class of general
purpose local filters. Fixed template filters
provide a method of adding the parameter
K to mean filters so that we can get mean
filters the same size as general contiguous
K-average filters. Using the comparison to
mean filters, we find a consistent
relationship of K and window size to
reduction of the standard deviation in

filtered white noise. The relationship is
described using our M and H functions.
We are convinced that the behavior we

have described is real and highly
reproducible. We would like to see some
more proofs and, even more, an explanation
for this phenomenon.

The filter's two parameters allow a
great deal of control over the filter's action
without requiring powerful assumptions
about the image noise in order to estimate

noise parameters. We believe that setting
filter parameters using the expected

meaningful content of the image, rather
than an assumed structure for the image
noise, is a positive and rational step.
Furthermore, it is a step toward the
methods used by the most powerful image
processing systems known, the visual system
of living creatures.

We have begun the study of the
behavior of the contiguous K-average filter
under iteration. There is more to do. We

would like to know if the dynamical system
roduced by this filter can have an
rreducible) attractor other than a fixed

point. Characterization of the set of fixed
points for all filter parameter values would
be interesting if the final result is not too

ugl.y. A comparison of the sizes of the
regions of att_-action for different fixed
points is a topic that has not been well
studied in general and in this particular
case, the answer may be non-trivial.

As illustrated by our results using
shore line length,it is not easy to judge the
performance of a filter as a preprocessing
stage for other operations. However, we
feel that it is necessary. Filters are
commonly used as preprocessing stages and
their evaluation in this context is probably
more important for end users than
evaluations in isolation.

The technique of using some channels
to guide the cleaning of other, noisier
channels is a powerful device that deserves

more attention. One promising application
is using visual imagery to guide the
cleaning of radar data.
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TABLE 1

Estimated Values for M(W)

Contiguous K-average K-average

Window Number of

Width Neighbors

Standard Standard

Deviation NSD Deviation NSD

3 4 21.8664 1.4558 22.0817 1.4642

5 10 18.2429 1.9204 20.8624 2.1872

7 19 16.2509 2.3581 20.4732 2.9586

9 31 14.9150 2.7644 20.3138 3.7497

11 46 13.9198 3.1428 20.2248 4.5477

13 64 13.1390 3.4991 20.1578 5.3464

15 85 12.4863 3.8322 20.1315 6.1533

17 109 11.9479 4.1527 20.1069 6.8954

19 136 11.4855 4.4588 20.0959 7.7697

211 166 11.0544 4.7503 - -

311 361 9.4795 6.0245 - -

Values for M(W) estimated from a 250 by 1000 image with border trimmed

after processing. The standard deviations used to compute the NSD are taken

over the same trimmed area for both the original and processed image. The

standard deviation of the trimmed original data was 30.0399. 32,400 points,

after trimming, were used to compute the values for the K-average filter.

' The data for W=21 and W=31 are over partial images with 10580 and 23980

points respectively. The W=21 has a width 10 border trimmed and the W=31

has a width 15 border trimmed.

28



Pattern_

Filter1
Fixed

Template
Ave.

_ed.

K-average

TABLE II

BACKGROUND CLASS
Additive Noise; 5762 points

Constant Increasing
mean std.dev, mean std.dev.

W=3 31.89 27.37 5.84 1.31
W=5 51.52 37.96 6.60 1.83
_=7 64.03 48.82 7.14 2.40
_=3 5.20 .70 5.19 .70
V=5 5.57 .73 5.55 .73
W=7 89.29 98.14 7.99 3.69

,o. 1.o , 4.91 1.16 4.91 1.17
Ave.G. (5,5) 4.90 .61 4.90 .61

(31,31 4.98 .15 4.98 .15
Contiguous
K-average

Ave. (5,5) 4.91 .93 4.92 .96

Med. _ _, 4.91 .93 4.93 .95Ave. ( , ) 4.91 .68 4.94 .74
(55) 4.90 .61 4.90 .61

Med.

Multiplicative Noise; 5762 points

Decreasing
mean std.dev.

31.08 85.32
50.12 36.71
62.11 47.00

5.20 .70
5.57 .73

85.88 94.17

4.91 1.02
4.91 1.16
4.90 .61
4.98 .15

4.91 .93
4.91 .93
4.91 .68
4.90 .61
4.97 .19

Pattern_ Constant Increasing Decreasing
Filteri meanstd.dev, mean std.dev, mean std.dev.
Fixed

Template
Ave. W=3 21.49 17.31 5.98 1.39 20.70 16.46

_=5 33.55 23.60 6.72 1.90 32.13 22.33
V=7 41.22 30.17 7.22 2.47 39.35 28.41
V=3 5.37 .81 5.33 .80 5.37 .81
V=5 5.82 .89 5.71 .84 5.82 .89
V=7 32.31 33.61 6.57 1.91 30.65 31.49

K-average
. ,5) 5.03 1.20 5.06 1.25

, 5.02 1.38 5.04 1.41

Ave'G'(31,31) 5.01 .19 5.01 .19
Contiguous
K-average

Ave. ((5,5))__ 5.02 1.09 5.05 1.14
_ed. , 5.03 1.09 5.06 1.13
Ave. , 5.03 .77 5.08 .87
Ave.G. (5,5) 5.02 .71 5.02 .71

(_13i, ) 5.01 .23 5.01 .23

5.03 1.20
5.02 1.38
5.03 .70
5.01 .19

5.02 1.09
5.03 1.09
5.02 .77
5.02 .71
5.01 .23
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Noise_
Filter1
Fixed

Template
Ave.

ged.

_/=3
V=5
V=7
V=3

v/o first 3
V=5

w/o first 3
V=7

w/o first 3
K-average

Contiguous

STRIPE CLASS
6138 points

kdditive
mean std.dev.

Multiplicative
mean std.dev.

180.57 31.16 113.09 22.62
162.16 36.33 101.75 23.49

150.42 32.39 94.55 20.60

203.40 21.10 119.52 23.78

205.70 .69 122.17 19.28

194.11 46.18 108.13 30.75

205.47 .64 114.87 17.55

191.70 50.30 102.52 31.00
205.32 .64 109.57 17.38

205.91 1.01 127.82 31.35
205.91 1.16 128.34 1.16
205.92 .62 128.77 16.59
205.97 .16 128.78 6.49

K-average
Ave. (5,5) 205.92 .92 127.97 28.62

Med. !_ _, 205.92 .91 127.78 28.64Ave. ( , ) 205.90 .69 128.12 21.86
kve.G. (5 5) 205.92 .62 128.55 16.452o5.o7   8.6o 6.84

Table 2 Mean and standard deviation data for striped test image. Additive

noise and multiplicative noise have been added to three original images, then

filtered using various methods. The templates are centered squares with side

length W. For the K-average and contiguous K-average filters, the G signifies

guided. For the guided runs, the (noise free) original image is one channel with

weight 1 and the noisy image is the other channel with weight 0. In the

K-average and contiguous K-average filter descriptions, the first number of the

pair is the window size and the second number is k, the number of pixels

clustered. For the median filter applied to the stripe class, the first three stripes

were destroyed because of their small width and this effect produced most of the

variance in the additive noise case. We also give the statistics for all the stripes

except the first three to show the difference.
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CAPTIONS

Figure 1

Estimated values for H(W,t). Data for
contiguous K-average, labelled SIFT,
and for K-average, labeled KAVG.
Error bars are not plottable
at this scale. See text for
discussion.

Figure 2
Reachability Graph:
(a) The template with (0,0) marked by
an asterisk.

(b) This shows the labels for the pixels
of the grid.

(c) This is the resulting teachability
graph. Note that it is not strongly
connected.

Figure 3
a. Left image This image is a raw
image produced by TIMS. See section
5 for further description. Note the
intense horizontal noise pattern.
b. Right Image Data from after 30
iterations of contiguous K-average,
W=5, K=8. Note retention of some
horizontal noise and non-noise
features.

Figure 4

Percent of data changed per iteration
for four dissimilar data types: human
head (MRI), agriculture, marsh/water,
ocean, rock. The human head data
was provided by Dr. Michael Vannier

of the Mallinkrodt Inst. of Radiology,
Washington University. It is a vertical
section, frontal view of the brain and

neck. It was processed by contiguous
K-average, labeled SIFT, and by

K-average, labeled KAVG. All other
images were processed only by
contiguous K-average. Agricultural
areas are a portion of the data used in

figure 3 and some Thematic Mapper
imagery over a portion of NW
Mississippi. The marsh]water and
ocean images came from the CAMS
scanner, see discussion in section 6 of

text. The target areas were near the
mouth of the Atchafalaya River. The
rock is an image of a thin section of
St. Peter Sandstone, provided by Dr.
Dale Morgan, Texas A&M University.

Figure 5
Synthetic image with admixtures of
normal random and harmonic noise of

various intensities. From right to left
the images have increasing harmonic
noise. This corresponds to the minor
cycles in fig_.tre 6. From top to bottom
they have increasing random noise,
corresponding to the major cycles in
figure 6. These are the limits and the
central points of the 5 X 5 array of
images used to demonstrate the use of
filters as a preprocessing step.

Figure 6
Effect of Five Filters on Interface

Length, with differing types and levels
of noise. Refer to figure 5 for samples
of the images processed. Interface
length was computed using the ELAS
module SLIN [2] after previously
filtering each image.

Figure 7

CAlibrated Multispectral Scanner,
CAMS, data of Salt Point, Atchafalaya
Bay, Gulf Coast of Louisiana.
Resolution is approximately 30 meters.
Raw data is shown in on the left.

The corresponding channels, after a
multichannel filtering with the
contiguous K-average filter, are shown
on the right. From top to
bottom the channels shown are 4

0.63-0.69pan), 7 (1.55-1.75pzn), and 8
2.08-2.35pzn).
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Figure 3
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Figure 5

OR!G!N_2 PAGE _$
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